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EQUIVALENCES FOR MORSE HOMOLOGY

MATTHIAS SCHWARZ

Abstract. An explicit isomorphism between Morse homology and singular
homology is constructed via the technique of pseudo-cycles. Given a Morse
cycle as a formal sum of critical points of a Morse function, the unstable
manifolds for the negative gradient flow are compactified in a suitable way,
such that gluing them appropriately leads to a pseudo-cycle and a well-defined
integral homology class in singular homology.

1. Introduction

The aim of this paper is to give an explicit construction of an isomorphism
between Morse homology and singular homology. Morse homology is a Morse-
theoretical approach to the homology of a smooth manifold which goes back al-
ready to Thom and plays a crucial role in Smale’s proof of the h-cobordism theo-
rem, cf. also [Mil65]. It was studied by J. Franks [Fra79], rediscovered by Witten
[Wit82] in terms of a deformation of the de Rham complex and generalized by
Floer [Flo89] as an approach to solve a conjecture by Arnold. In [Sch93] the author
developed a comprehensive approach to Morse homology as an axiomatic homol-
ogy theory for the category smooth manifolds (not necessarily compact) satisfying
all Eilenberg-Steenrod axioms. Moreover, this approach used the purely relative
“Floer-theoretical” definition of Morse homology in terms of moduli spaces of tra-
jectories for the gradient flow equation connecting critical points. However, [Sch93]
did not present an explicit isomorphism to other axiomatic homology theories like
for instance the de Rham theorem between de Rham cohomology and singular coho-
mology. That Morse homology is isomorphic to other homology theories is proved
in [Sch93] by extending it to a slightly larger category of certain CW-spaces compat-
ible with the manifold structure in which the isomorphism is deduced inductively,
based on the Eilenberg-Steenrod axioms. That is, in such a category existence and
uniqueness of the isomorphism follows by abstract application of the axioms.

In the approach of Smale and Milnor, used similarly also in Floer’s description,
a direct isomorphism between Morse homology and singular homology is obtained
by choosing a special, namely self-indexing Morse function, such that the boundary
map in the Morse chain complex can be related to the connecting homomorphism ∂∗

in the long exact sequence of the cell decomposition induced by the Morse function
(see also Section 4.1.1 below).

The approach of this paper is to show that, given any Morse function f with a
generic Riemannian metric g, one can construct singular cycles explicitly from the
given Morse cycle. The main objects which have to be considered as intermediate
tools are so-called pseudo-cycles. This is a geometric differential-topological way
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2 MATTHIAS SCHWARZ

to represent homological (integral!) cycles which plays also a role in the definition
of quantum cohomology (see e.g. [MS94]). In this paper, we give a short proof
that integral homology classes can be represented by pseudo-cycles and that every
pseudo-cycle in fact leads to an integral homology class.

The purpose of this paper is also to provide a detailed construction of this equiv-
alence between Morse homology and singular homology via pseudo-cycles, which to
the author’s knowledge has not yet been carried out elsewhere, but which already
has been used several times, in particular in the theory of quantum cohomology
and Floer homology, e.g. [PSS96], [Sch98], [Sei97], [Sch].

After a short account on the definition of Morse homology pseudo-cycles are
defined in Section 3, where it is proven that pseudo-cycles represent integral ho-
mology classes and every class can be represented as such. Section 4 contains the
construction of the explicit isomorphism between Morse homology and singular ho-
mology. In the first part we show how to obtain a well-defined pseudo-cycle from a
given Morse cycle and that the induced singular class is uniquely associated to the
Morse homology class. The idea is to glue all unstable manifolds of critical points,
which occur in the given Morse cycle, along the 1-codimensional strata of their suit-
able compactifications. In the second part we construct the inverse homomorphism
in terms of intersections of pseudo-cycles representing singular classes and stable
manifolds of critical points.

2. Morse homology

2.1. Definition. Let M be an oriented1 smooth manifold, f ∈ C∞(M, R) an ex-
hausting2 Morse function and g be a complete Riemannian metric. Consider the
critical set Crit∗ f of f as graded by the Morse index µ : Crit f → Z and define the
stable and unstable manifolds of the negative gradient flow in terms of spaces of
curves,

Wu(x) = { γ : (−∞, 0] → M | γ̇ + ∇gf ◦ γ = 0, γ(−∞) = x },

W s(y) = { γ : [0,∞) → M | γ̇ + ∇gf ◦ γ = 0, γ(+∞) = y }
(2.1)

for x, y ∈ Crit f . The curves γ are smooth and γ(±∞) denotes the limit for
t → ±∞. The spaces Wu(x) and W s(y) are finite-dimensional manifolds with

dimWu(x) = µ(x) and dimW s(y) = dim M − µ(y)

and the evaluation mapping γ → γ(0) induces smooth embeddings into M , i.e. dif-
feomorphisms onto the image,

Ex : Wu(x) →֒ M, Ey : W s(y) →֒ M .

However, in general, these maps are not proper. Choosing a generic Riemannian
metric we obtain Morse-Smale transversality, namely Wu(x) and W s(y) intersect
transversely in M with respect to Ex and Ey . If this transversality holds for
all x, y ∈ Crit f , (f, g) is called a Morse-Smale pair. We obtain the manifold of
connecting orbits

Mx,y(f, g) = Wu(x) ⋔ W s(y)

= { γ : R → M | γ̇ + ∇gf ◦ γ = 0, γ(−∞) = x, γ(+∞) = y },

dimMx,y(f, g) = µ(x) − µ(y),

1If M is not orientable, choose homology coefficients in Z2.
2i.e. proper and bounded below. In [Sch93], this property is called coerciveness.
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on which, if x 6= y, R acts freely and properly by shifting

(τ ∗ γ)(t) = γ(t + τ) .

Let us fix orientations for all unstable manifolds Wu(x), then the orientation of
M induces orientations for W s(y) and Mx,y. We call an unparameterized trajec-
tory γ̂ ∈ Mx,y/R for relative index 1 positively oriented if the orbit R · γ̂ ⊂ Mx,y is
positively oriented by the action of R which corresponds to the action by the nega-
tive gradient flow. Thus, for relative index 1, the moduli spaces of unparameterized
trajectories

M̂x,y = Mx,y/R, µ(x) − µ(y) = 1,

are compact, that is finite, and every element γ̂ carries a sign τ(γ̂) ∈ {±1}. We
define the intersection numbers

n(x, y) =
∑

γ̂∈M̂x,y

τ(γ̂)

and an operator on the module over Z generated by the critical points of index k,

Ck(f) = Z ⊗ Critk f, ∂ = ∂(f, g),

∂ : Ck(f) → Ck−1(f), ∂x =
∑

y

n(x, y) y .

The fundamental theorem of Morse homology is

Theorem 2.1. ∂ is a chain boundary operator, i.e. ∂ ◦ ∂ = 0.

Hence, the homology Hk(f, g; Z) = Hk(C∗(f), ∂(f, g)) is well-defined as the quo-
tient of the module of Morse-cycles

Zk(f, g) = { a =
∑

x∈Critk f

axx | ∂a = 0 } .

modulo the boundaries Bk(f, g) = im ∂.
Let us now recall the homotopy invariance result in Morse homology. It is based

on Conley’s continuation principle (see [Con78]).

Theorem 2.2. Given two Morse-Smale pairs (f0, g0) and (f1, g1) there exists a

canonical homomorphism

Φ10 : H∗(f
0, g0) → H∗(f

1, g1)

such that

Φ21 ◦ Φ10 = Φ20 and Φ00 = id .

In particular, every Φji is an isomorphism.

This continuation theorem implies that we have well-defined Morse homology
groups

HMorse
∗ (M ; Z)

def
=

{
(ai) ∈

∏
H∗(f

i, gi) | aj = Φjiai

}

ρi : H∗(f
i, gi)

∼=−→ HMorse
∗ (M ; Z), ρi ◦ Φij = ρj .

(2.2)

Let us recall the construction of Φ10 from [Sch93]. Given the Morse-Smale pairs
(f i, gi), i = 0, 1, we choose an asymptotically constant homotopy over R, (fs, gs),
s ∈ R with

(fs, gs) =

{
(f0, g0), s 6 −R,

(f1, g1), s > R,
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for R large enough. This gives rise to the trajectory spaces

Mxo,x1
(fs, gs) = { γ | γ̇(s) + ∇gs

fs(γ(s)) = 0,

γ(−∞) = xo, γ(∞) = x1 } .

For a generic choice of the homotopy (fs, gs), these spaces are finite dimensional
manifolds with

dimMxo,x1
= µ(xo) − µ(x1)

and compact in dimension 0. As in the definition of the boundary operator ∂ we
define

Φ10 : C∗(f
0, g0) → C∗(f

1, g1),

Φ10xo =
∑

x1

n(xo, x1)x1,

n(xo, x1) = #algMxo,x1
(fs, gs) ,

where #alg means counting with signs τ(u) = ±1, analogously to above. That Φ10

is well-defined on the level of homology follows from a theorem stating that

Φ10 ◦ ∂0 = ∂1 ◦ Φ10 .

Moreover, it is shown in [Sch93] that the homomorphism Φ10 on homology level
does not depend on the choice of the homotopy (fs, gs).

2.2. Isomorphism via axiomatic approach. In [Sch93], Morse homology is ex-
tended towards an axiomatic homology theory for the category of smooth mani-
folds. It is functorial with respect to smooth maps, there exists a relative version
so that we have an associated long exact sequence, and all axioms of Eilenberg and
Steenrod are satisfied. However, in order to derive a natural isomorphism with any
other axiomatic homology theory, an extension to a larger category of spaces is
required, e.g. towards the subcategory of CW-pairs which are embedded smoothly
into finite-dimensional manifolds as strong deformation retracts of open subsets.
This approach is adopted in [Sch93] in order to prove the equivalence with other
homology theories.

3. Pseudo-cycle homology

In [MS94], pseudo-cycles were defined in order to find a suitable differential-
topological representation of homology cycles. However, this was only used with
rational coefficients so that every cycle can be represented as a closed submanifold.
Here, we consider integral homology classes.

Let M be a compact3 n-dimensional manifold. We consider an oriented smooth
k-dimensional manifold without boundary V together with a smooth map f : V →
M . Let the set f(V ∞) be defined as in [MS94],

f(V ∞)
def
=

⋂

K⊂V cpt.

f(V \ K) .(3.1)

According to [MS94], f : V → M is a pseudo-cycle if f(V ∞) can be covered by the
image of a smooth map g : P → M which is defined on a manifold P of dimension
not larger than dimV − 2.

3This poses no restriction for our application to Morse homology because we consider only
cycles lying in the compact sublevel sets Ma = { p ∈ M | f(p) 6 a } of an exhausting function.
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Moreover, let W be an oriented smooth (k+1)-dimensional manifold with bound-
ary ∂W , such that the inclusion i : ∂W →֒ W is proper, and let F : W → M be a
smooth map.

Theorem 3.1. Let (f, V ) be a pseudo-cycle and (F, W ) as above.

(a) If Hk(f(V ∞); Z) = Hk−1(f(V ∞); Z) = 0 and f(V ) 6⊆ f(V ∞), then (f, V )
induces a unique integral homology class αf ∈ Hk(M ; Z).

(b) Let ∂W = U be an open subset of V such that f(V ∞) ⊆ f(U∞) and F (W∞)∩
f(U) = ∅. If Hk(F (W∞); Z) = 0 the homology class αf vanishes.

In view of part (b) let us consider two pseudo-cycles f1 : V1 → M and f2 : V2 →
M to be cobordant if their disjoint union V = V1 ∐ V ∗

2 with orientation on V2

reversed forms a pseudo-cycle f : V → M such that there exists F : W → M
satisfying the condition in (b).

In this section we are using Alexander-Spanier homology theory for locally com-
pact Hausdorff spaces, cf. [Mas78]. The homology theory with arbitrary supports4,
i.e. not necessarily compact supports, is denoted by H∞

∗ (X). Note that, however,
homology theory with arbitrary supports, which is functorial with respect to proper
maps, agrees with any homology theory with compact supports, as for instance sin-
gular homology, when restricted to compact sets as M , f(V ∞) and F (W∞).

Proof of Theorem 3.1. Every oriented k-dimensional manifold X without boundary
carries a uniquely defined fundamental class [X ] ∈ H∞

k (X ; Z). If X is a manifold
with boundary ∂X then [X ] is well-defined in H∞

k (X \ ∂X) = H∞
k (X, ∂X). Every

open subset U ⊂ X inherits an orientation from X so that the natural restriction
map ρ : H∞

k (M ; Z) → H∞
k (U ; Z) gives ρ([U ]) = [X ]. Without loss of generality we

may assume that

f(V ) ∩ f(V ∞) = ∅ .

Otherwise, we replace V by the open, nonempty subset V \ f−1(f(V ∞)). Since
Alexander-Spanier homology with arbitrary supports is functorial with respect to
proper maps of locally compact Hausdorff spaces we redefine the map

f : V → M \ f(V ∞) .

By definition of f(V ∞), f is proper. The integral class

(f)∗([V ]) ∈ H∞
k (M \ f(V ∞); Z)

is well-defined. From the exact homology sequence for H∞
∗ and the pair (M, f(V ∞)),

Hk(f(V ∞)) → Hk(M)
j∗
−→ H∞

k (M \ f(V ∞)) → Hk−1(f(V ∞)) ,

we obtain by assumption the isomorphism j∗. Hence,

αf ≡ j−1
∗ (f)∗([V ]) ∈ Hk(M ; Z)

is well-defined.
We consider now an open subset U ⊂ V such that f(V ∞) ⊂ f(U∞) and f(U)∩

f(U∞) = ∅. We carry out the same procedure as before for the proper map

fU : U → M \ f(U∞)

4Alternatively, we could also use Borel-Moore homology with specified type of supports.
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and relate it to αf by the following commutative diagram with respect to the natural
restriction homomorphism ρ,

H∞
k (V )

f∗

−−−−→ H∞
k (M \ f(V ∞))

yρ

yρ

H∞
k (U)

(fU )∗
−−−−→ H∞

k (M \ f(U∞)) .

Since ρ ◦ j∗ = jU
∗ it follows that

jU
∗ (αf ) = ρ ◦ f∗([V ]) = (fU )∗([U ]) .(3.2)

Let us consider now the bordism ∂W = U . Without loss of generality we can
assume that F (W∞) ∩ F (W ) = ∅ so that we have the proper map

F : W → M \ F (W∞) .

In Alexander-Spanier homology theory, we know that the fundamental class [U ] is
the image of the fundamental class of the manifold with boundary W under the
boundary homomorphism ∂∗ in the exact homology sequence of the pair (W, U).
We obtain the commutative diagram

H∞
k+1(W, U)

∂∗−−−−→ H∞
k (U)

i∗−−−−→ H∞
k (W )

y(fU )∗

yF∗

H∞
k (M \ f(U∞))

ρ
−−−−→ H∞

k (M \ F (W∞))
xjU

∗

xjW
∗

Hk(M)
id

−−−−→ Hk(M) ,

therefore by (3.2)

jW
∗ (αf ) = ρ ◦ jU

∗ (αf ) = F∗ ◦ i∗([U ]) = 0,

because [U ] ∈ im ∂∗. Since jW
∗ is injective due to H∞

k (F (W∞)) = 0 it follows that
αf vanishes.

A topological space S is said to have covering dimension at most n if every
open cover U = {Uα} has a refinement U′ = {U ′

α} for which all the (n + 2)-fold
intersections are empty5,

U ′
B =

⋂

β∈B

U ′
β = ∅ if |B| > n + 2 .

We say then dimcovS 6 n. Clearly, S having covering dimension at most n implies
that Ȟm(S) = 0 for m > n. For a compact space S this implies Hm(S) = 0 for
m > n.

We have the following simple

Lemma 3.2. Let f : P → M be a smooth map between manifolds and S be a

compact subset of M such that S ⊂ f(P ). Then

dimcov S 6 dimP .

The final result is

5compare [DK90], Section 9.2.3.
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Theorem 3.3. Every pseudo-cycle f : V → M of dimension k induces a well-

defined integral homology class αf ∈ Hk(M ; Z). Moreover, any singular cycle α ∈

Zsing
k (M ; Z) gives rise to a k-pseudo-cycle f : V → M such that αf = α.

Note that if f(V ) ⊂ f(V ∞) then trivially αf = 0.

Proof. The well-defined homology class αf follows from combining Theorem 3.1
with Lemma 3.2.

Suppose now that α ∈ Hsing
k (M ; Z) is a k-cycle given by a smooth singular chain.

By pairwise identifying and sufficiently smoothing the k − 1-dimensional faces of
the k-simplexes involved in α the cycle-property of α implies that we obtain a k-
dimensional manifold V , not necessarily compact, with a smooth structure, such
that the singular chain gives a map f : V → M meeting the pseudo-cycle condition,
since f(V ∞) is covered by the images of the faces of codimension 2 and higher.
Two cohomologous singular chains lead to cobordant pseudo-cycles in the sense of
Theorem 3.1 (b).

Hence, from now on we can represent integral cycles in singular homology by
pseudo-cycles.

4. The Explicit Isomorphism

The first part consists of showing that each Morse cycle leads to a well-defined
pseudo-cycle, and that the associated singular homology class does not depend on
any uncanonical choices involved.

4.1. Pseudo-cycles from Morse cycles. Let (f, g) be a Morse-Smale pair and
consider the associated homology H∗(f, g). The idea of defining the homomorphism
into singular homology is to construct a k-dimensional pseudo-cycle E : Z(a) → M
for a given Morse cycle {a} = {

∑
x∈Critk f ax x ∈} ∈ Hk(f, g). This is essen-

tially based on considering the unstable manifolds Wu(x) from (2.1) with multi-
plicity ax ∈ Z and their evaluation maps Ex : Wu(x) → M . In order to obtain
a well-defined pseudo-cycle we have to carry out a suitable identification on the
1-codimensional strata of a suitable compactification of Wu(x).

Let x ∈ Critk f and y ∈ Critk−1 f such that M̂x,y is a nonempty finite set. We
say that a sequence (wn) ⊂ Wu(x) is weakly convergent towards a simply broken
trajectory,

wn ⇀ (û, v) ∈ M̂x,y × Wu(y),

if wn → v in C∞
loc((−∞, 0], M) and there exists a reparametrization sequence τn →

−∞ such that τn ∗ wn → u in C∞ on compact subsets of R for a representative u
of the unparameterized trajectory û. Note that, in particular, wn(0) → v(0).

The following result is completely analogous to the gluing results developed in
[Sch93], Section 2.5. There, the gluing operation has been constructed for trajec-
tory spaces My,z instead of Wu(y), but the case of unstable manifolds is handled
exactly the same. It provides us with the suitable description of strata of the weak
compactification of Wu(x).

Lemma 4.1 ([Sch93]). Given an open subset V ⊂ Wu(y) with compact closure

there exists a constant ρV > 0 and a smooth map

#V : M̂x,y × V × [ρV ,∞) → Wu(x),

(û, v, ρ) 7→ û#ρv,
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x

y

û

v

wn

wn(0) v(0)

Figure 1. Weak convergence towards simply broken trajectory

such that

(a) #V is an embedding,

(b) #V (û, ·, ·) is orientation preserving exactly if τ(û) = +1,
(c) û#ρv ⇀ (û, v) for ρ → ∞, and for any wn ⇀ (û, v) there exists an no such

that for all n > no wn = ûn#ρn
vn for unique (ûn, vn, ρn), and

(d) the evaluation maps Ex : Wu(x) → M and Ey : Wu(y) → M extend to

Ēx : Wu(x) ∪#V M̂x,y × V × [ρV ,∞) → M .

such that Ēx(û, v, ρ) = Ex(û#ρv) for ρ ∈ [ρv,∞) and Ēx(û, v, ρ) = Ey(v) for

ρ = ∞.

Let us define Wu(x) to be the disjoint union

Wu(x) = Wu(x) ∪
⋃

µ(y)=µ(x)−1

M̂x,y × Wu(y)(4.1)

equipped with the topology generated by

(a) the open subsets of Wu(x),

(b) the neighborhoods of (û, v) ∈ M̂x,y × Wu(y) of the form

#V ({û} × V × (ρ,∞)) ∪ {û} × V, ρ > ρV ,

for V ⊂ Wu(y) open with compact closure.

This provides a Hausdorff topology and we obtain

Lemma 4.2. Wu(x) is an oriented manifold with boundary oriented by M̂x,y ×
Wu(y) and Ēx : Wu(x) → M is a smooth embedding.

The proof is given below together with the proof of Lemma 4.4.
Consider now a Morse-cycle

a ∈ Zk(f, g), a =
∑

x

axx .
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Given l ∈ N let us denote by l ·Wu(x) the disjoint union of l copies of Wu(x), that
is, the topological sum. If l ∈ Z, l < 0, we replace Wu(x) by Wu(x)∗, that is, with
the orientation reversed. Thus, we associate to a the topological sum

a 7→ ∐xax · Wu(x)(4.2)

which is a k-dimensional oriented manifold with oriented boundary and it consists
of

∑
x |ax| connected components. Observe that this manifold with boundary is

not compact in general.
We denote by ∆a the following finite set of connecting unparametrized trajecto-

ries of relative index 1,

∆a =
⋃

{ axû | û ∈ M̂x,y, x ∈ Critk f, y ∈ Critk−1 f }

where axû is the disjoint union of |ax| copies of {û}. Each û carries the sign
τ(û) ∈ {±1} and we assign to every γ ∈ axû the new sign σ(γ) = sgn(ax) · τ(û).
Computing

∂a =
∑

x

∑

µ(y)=µ(x)−1

∑

û∈M̂x,y

axτ(û) y

we immediately obtain

Lemma 4.3. If a =
∑

x axx is a Morse-cycle there exists an equivalence relation

∼∆a on ∆a such that for each γ ∈ ∆a there exists a unique γ′ 6= γ with σ(γ′) =
−σ(γ), so that γ ∼∆a γ′ and γ(+∞) = γ′(+∞) ∈ Critk−1 f for γ, γ′ viewed as flow

trajectories.

Since ∆a is an index set for the components of the k − 1-dimensional manifold
from (4.2), ∂(∐xaxWu(x)) such that σ(γ) corresponds to the boundary orientation,

we obtain the equivalence relation for points {γ} × {v} ∈ axM̂x,y × Wu(y),

{γ} × {v} ∼a {γ′} × {v′}
def
⇐⇒ γ ∼∆a γ′, v = v′ .

We define

Z(a) = ∐xaxWu(x)
/
∼a .(4.3)

One easily sees that Z(a) is a topological Hausdorff space and clearly the evaluation

x

Wu(x)

x′

Wu(x′)

y
γ γ′

v

Figure 2. Gluing unstable manifold along simply broken trajec-
tories
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maps Ēx yields

E : Z(a) → M, [γ, v] 7→ v(0) .

In fact, we obtain

Lemma 4.4. The space Z(a) carries the structure of a k-dimensional manifold

without boundary and E : Z(a) → M is a smooth map.

Proof of Lemmata 4.2 and 4.4. Let us consider x, x′ ∈ Critk f and y ∈ Critk−1 f

with û ∈ M̂x,y and û′ ∈ M̂x′,y such that û ∼∆a û′, in particular, τ(û) = −τ(û′).
Let vo ∈ Wu(y) and V, V ′ ⊂ Wu(y) be two relatively compact neighborhoods of
vo.

In view of Lemma 4.2 we consider the following local coordinates at (û, vo) ∈
∂Wu(x), respectively for Lemma 4.4 [(û, vo)]∼a

∈ Z(a) = ∐xaxWu(x)/ ∼a,

#V
û,û′ : V × [0, ǫ) → W

u
(x),

(v, t) 7→






û#− 1
t
v, t < 0,

(û, vo) ∼a (û′, vo), t = 0,

û′# 1
t
v, t > 0,

where # is the gluing map from Proposition 4.1 and ǫ > 0 is small enough depending
on the compact set cl(V ). Thus, we have to show that

(A) (#V ′

û,û′)−1 ◦ #V
û,û′ : U × (−ǫo, ǫo) → (V ∩ V ′) × R is smooth for U ⊂ V ∩ V ′

and ǫo < min(ǫ, ǫ′) sufficiently small, and that
(B) E ◦ #V

û,û′ : V × (−ǫ, ǫ) → M is smooth at (v, 0).

Let us recall the definition of û#ρv from [Sch93]. Let β− : R → [0, 1] be a cut-off
function with

β−(s) =

{
1, s 6 −1,

0, s > 0,

and β+(s) = β−(−s). We write

β±
ρ (s) = β±(s + ρ), ûρ(s) = û(s + ρ) .

For every v ∈ V and ρ > ρo large enough we define w = w(û, v, ρ) by

w =





û(s + 2ρ), s 6 −ρ − 1,

expy

(
β−

ρ exp−1
y ◦û2ρ + β+

ρ exp−1
y ◦v

)
(s), |s + ρ| < 1,

v(s), s > −ρ + 1 .

In particular, w(ρ) = y. One can find a ρV > 0 and a bundle π : L⊥ → V × [ρV ,∞)
with L⊥

(v,ρ) ⊂ C∞(w∗TM) such that there exists a unique section γ : V × [ρV ,∞) →

L⊥ providing

(û#ρv)(s) = expw(s)(γ(v, ρ)(s)), û#ρv ∈ Wu(x) .

The bundle L⊥ can be completed fiberwise in terms of a Sobolev space yielding a
smooth bundle such that γ is a smooth section. (Details can be found in [Sch93].)
Moreover, there is an exponential estimate for the correction term γ(v, ρ) between
w(v, ρ) and û#ρv. Namely, there exists a σ > 0 such that

sup
s∈R

|γ(v, ρ)(s)| 6 c e−σρ(4.4)
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for some c > 0 uniformly for v ∈ V . Moreover, also the covariant derivatives of γ
with respect to v and ρ satisfy such an exponential estimate as ρ → ∞. This is due
to the fact that w(v, ρ) ⇀ (û, v) as ρ → ∞ and that the gradient flow trajectories
û and v converge exponentially fast towards y,

d(û(s), y), d(v(−s), y) 6 c e−σs as s → ∞ .

The construction of L⊥ and γ in [Sch93] is such that L⊥ → V × [ρV ,∞) and
L⊥ → V ′ × [ρV ′ ,∞) coincide over V ∩ V ′ × [max(ρV , ρV ′),∞). One obtains a
unique smooth gluing map

#V ∪V ′

û : (V ∪ V ′) × [max(ρV , ρV ′),∞) → Wu(x)

extending #V and #V ′

and assertion (A) follows.
Let us consider now the coordinate chart φV (v, t) = #V

û,û′(v, t) with the expo-

nential estimate for the correction term γ(v,± 1
t
),

‖∇αγ(v,± 1
t
)‖∞ 6 cα e−| 1

t
|(4.5)

where ∇α are the covariant derivatives of the section γ with respect to the variables
v and ρ. We obtain for the evaluation map E : Z(a) → M ,

E ◦ φV (v, t) =






Ex(û′#(− 1
t
)v), t < 0,

Ey(v), t = 0,

Ex(û# 1
t
v), t > 0,

=





expv(0)

(
γ(û′, v,− 1

t
)(0)

)
, t < 0,

v(0), t = 0,

expv(0)

(
γ(û, v, 1

t
)(0)

)
, t > 0 .

Thus, the smoothness of E ◦ φV follows from (4.5) and the standard identities for
the covariant derivatives of exp: TM → M at 0p ∈ TpM .

The next step is to analyze the map E : Z(a) → M with respect to the end of
Z(a), because in general Z(a) is not compact. If it is compact, we immediately
obtain the well-defined integral homology class E∗([Z(a)]) ∈ Hk(M ; Z) associated
to the Morse cycle a of degree k.

Lemma 4.5. The evaluation map E : Z(a) → M associated to a Morse cycle a ∈
Zk(f, g) is a k-dimensional pseudo-cycle.

Proof. Consider a point p ∈ M such that

p ∈ E(Z(a)∞) =
⋂

K ⊂
cpt.

Z(a)

E(Z(a) \ K) .

That is, there exists a sequence (γn) ⊂ Z(a) such that γn(0) → p in M but
(γn) contains no convergent subsequence in Z(a). We can assume that every γn

corresponds to an element in Wu(x) for some x ∈ Critk f such that ax 6= 0 for a =∑
x axx. The compactness result for the space of negative gradient flow trajectories

provides a convergent subsequence

γnk

C∞

loc−→ γ ∈ Wu(z),

with µ(z) 6 µ(x). Since (γnk
) does not converge in

Z(a) = ∐xaxWu(x)
/
∼ ,
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we obtain µ(z) 6 µ(x) − 2. This shows that E(Z(a)∞) is covered by the images of
the evaluation maps

E(Z(a)∞) ⊂
⋃

µ(z)6k−2

imEz ⊂ M .(4.6)

Thus, E : Z(a) → M is a pseudo-cycle.

Given a Morse-cycle a ∈ Zk(f, g), we denote the by Lemma 4.5 and Theorem
3.3 uniquely determined homology class by

[a] ∈ Hk(M ; Z) .

Moreover, the map a 7→ [a] is linear by construction.

Theorem 4.6. If a ∈ Zk(f, g) is a boundary, i.e. a = ∂b for some b ∈ Ck+1(f, g),
then [a] = 0. That is, the homomorphism

Φf,g : Hk(C∗(f, g), ∂) → Hk(M ; Z), {a} 7→ [a](4.7)

is well-defined.

Proof. Consider a =
∑

x axx ∈ Zk(f, g) and b =
∑

z bzz ∈ Ck+1(f, g) such that
∂b = a. Similar to the construction of Z(a) we now set

W = ∐z∈Critk+1 fbz · W
u(z), Wu(z) = Wu(z) ∪

⋃

x∈Critk f

M̂z,x × Wu(x) ,

as in (4.1). We can obtain the boundary of the manifold Wu(z) as

∂Wu(z) = ∐x∈Critk fn(z, x) · Wu(x) ,

such that by setting

U = ∐µ(x)=kax · Wu(x)

we obtain the smooth (k + 1)-dimensional manifold W with boundary ∂W = U .
Note that U ⊂ Z(a) is a k-dimensional open submanifold with

E(Z(a)∞) ⊂ E(U∞)

and, analogously to (4.6), E(U∞) and E(W∞) are covered by the at most (k − 1)-
dimensional submanifolds

E(W∞) ∪ E(U∞) ⊂
⋃

µ(y)6k−1

imEy .

Altogether, we have E(W∞)∩E(U) = ∅ and Hk(E(W∞); Z) = 0 so that Theorem
3.1 (b) is applicable.

In order to obtain a homomorphism Φ: HMorse
∗ (M) → Hsing

∗ (M) we have to
show that the linear maps Φf,g are compatible with the canonical isomorphisms
from Theorem 2.2

Φ10 : H∗(f0, g0)
∼=
−→ H∗(f1, g1)

from Theorem 2.2. For this purpose we first present an alternative construction
of a pseudo-cycle associated to a (f, g)-Morse cycle representing the same singular
homology class.

Let us consider a smooth 1-parameter family (fs, gs) of functions and Riemannian
metrics with −∞ < s 6 0 such that for some R > 0

(fs, gs) = (f, g), for all s < −R .
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The pair (f, g) is Morse-Smale as above. We now redefine for x ∈ Crit f

Wu(x) = { γ : (−∞, 0] → M | γ̇(s) + ∇gs
fs(γ(s)) = 0, γ(−∞) = x } .

All statements about the prior unstable manifolds remain valid for this non-auto-
nomous flow. Observe that we have the following weak compactness result: Given
any sequence (γn) ⊂ Wu(x) which contains no convergent subsequence, there exists
a subsequence (nk) and a reparametrization sequence τk → −∞ such that

γnk

C∞

loc−→ γ ∈ Wu(y) and τk ∗ γnk

C∞

loc−→ u ∈ Mx′,y′(f, g) .

for some x, x′, y′, y ∈ Crit f with µ(x) > µ(x′) > µ(y′) > µ(y). Again, in general,
γnk

can converge weakly towards a multiply broken trajectory. If µ(y) = µ(x) − 1
we have x′ = x and y′ = y.

Carrying out the same constructions as before, now based on the deformed un-
stable manifolds associated to (fs, gs), we obtain pseudo-cycles

Ẽ : Z̃(a) → M

associated to Morse-cycles a ∈ Zk(f, g) thus leading to a homomorphism

Φ̃f,g : H∗(C∗(f, g), ∂) → H∗(M ; Z) .(4.8)

Lemma 4.7. The homomorphisms Φf,g and Φ̃f,g are identical.

Proof. We have to show that the pseudo-cycles E : Z(a) → M and Ẽ : Z̃(a) → M
can be related by a suitable pseudo-cycle cobordism such that Theorem 3.1 (b)
applies.

Since asymptotically constant families (fs, gs)s∈(−∞,0] as above form a convex
set we can consider the continuous path

(fs, gs)λ = (1 − λ)(f, g) + λ(fs, gs), λ ∈ I = [0, 1] .

Given x ∈ Crit f , the space

Wu
I (x) = { (λ, γ) |λ ∈ I, γ ∈ Wu

λ (x) }

is a smooth manifold of dimension µ(x) + 1, where Wu
λ (x) is the unstable manifold

of x associated to the pair (fs, gs)λ. Its boundary is the disjoint union of Wu
1 (x) and

Wu
0 (x)∗, i.e. the latter with reversed orientation. Analyzing the non-compactness of

Wu
I (x), we consider a sequence (λn, γn) which contains no convergent subsequence.

There exists a subsequence (nk) such that λnk
→ λ and either

γnk
⇀ (u, γ) ∈ M̂x,y(f, g) × Wu

λ (x) ,

for µ(y) = µ(x) − 1, or γnk
converges in C∞

loc towards a γ ∈ Wu
λ (z) with µ(z) 6

µ(x) − 2.
Moreover, we can prove a λ-parameterized version of the gluing result in Lemma

4.1 yielding a gluing map

#V : M̂x,y × V × [ρV ,∞) → Wu
I (x)

for every relatively compact, open subset V ⊂ Wu
I (y) and µ(y) = µ(x) − 1. This

allows us to build W
u

I (x) as in (4.1) and to construct a smooth manifold ZI(a)
together with a smooth map

E : ZI(a) → M, ∂ZI(a) = Z̃(a) − Z(a),



14 MATTHIAS SCHWARZ

which extends the given maps Ẽ and E on the boundary. Since

E(ZI(a)∞) ⊂
⋃

µ(z)6µ(x)−2

imEz

for Ez : Wu
I (z) → M with dimWu

I (z) 6 µ(x)−1, we meet the conditions of Theorem
3.1 (b).

In view of (2.2), we now show that the pseudo-cycle homomorphisms Φi = Φ(fi,gi)

are compatible with the canonical isomorphisms Φij ,

Lemma 4.8. The homomorphisms Φi : H∗(f
i, gi) → H∗(M ; Z) are compatible with

(Φij), that is,

Φ1 ◦ Φ10 = Φ0

for all Morse-Smale pairs (f0, g0) and (f1, g1).

Proof. We have to compare the pseudo-cycles

E0 : Z0(a) → M and E1 : Z1(Φ10(a)) → M

for any Morse cycle a ∈ Zk(f0, g0). That is, we have to show that the Ei can be
extended to a suitable cobordism E : W → M such that, again, Theorem 3.1 (b)
applies.

Let us consider the space similar to Wu
I (x) in the proof of Lemma 4.7,

WR+
(x) = { (λ, γ) |λ ∈ [0,∞), γ ∈ Wu(x; fs+λ, gs+λ) }

for x ∈ Crit f0. (If [0,∞) is replaced by a compact interval we are in the situation
of Lemma 4.7.) Now we have to deal with additional non-compactness for λn → ∞.
Let (λn, γn) ⊂ WR+

(x) be such that λn → ∞. Then, there exists a subsequence
(nk) such that

γnk

C∞

loc−→ γ ∈ Wu(x′; f1, g1)

for some x′ ∈ Crit f1. Necessarily, µ(x′) 6 µ(x). If both critical points x and x′

have equal Morse index then, up to choosing a subsequence,

(−λnk
) ∗ γnk

C∞

loc−→ u ∈ Mx,x′(fs, gs) .

In that case we denote this weak convergence again by

(λnk
, γnk

) ⇀ (u, γ) .

For the converse, we have a gluing theorem analogous to Lemma 4.1:
Let µ(x) = µ(x′). Given V ⊂ Wu(x′), an open and relatively compact subset,

there exists a λV > 0 and a smooth map

#V : Mx,x′(fs, gs) × V × [λV ,∞) → WR+
(x) ,

such that the corresponding properties (a)–(d) as in Lemma 4.1 hold true. Ex-
tending the construction from the proof of Lemma 4.7 based on the λ-parametrized
gluing, we now glue in boundary manifolds to WR+

such that

W R+
(x) = WR+

(x) ∪
⋃

µ(y)=µ(x)−1

(
Mx,y(f

0, g0) × WR+
(y)

)

∪
⋃

µ(x′)=µ(x)

(
Mx,x′(fs, gs) × Wu(x′; f1, g1)

)
.
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Note that it is not necessary to glue in the codimension-2 manifolds Mx,y(f
0, g0)×

My,y′(fs, gs) × Wu(y′; f1, g1) for µ(y′) = µ(x) − 1. Building the quotient manifold

Z̄(a) = ∐x∈Critk f0ax · W R+
(x)

/
∼

analogously as above, we obtain a smooth (k+1)-dimensional manifold with bound-
ary

∂Z̄(a) = Zo(Φ10(a)) − Z(a)

where Zo(Φ10(a)) is the open subset
⋃

x∈Crit f0

ax · Mx,x′ × Wu(x′) ⊂ Z(Φ10(a))

with complementary strata of codimension at least 1. The evaluation maps E(γ) =
γ(0) extend from the boundary manifolds to Z̄(a) and it is straightforward to verify
that the conditions for Theorem 3.1 (b) are satisfied.

Summing up, we obtain the well-defined homomorphism

Φ: HMorse
∗ (M ; Z) → Hsing

∗ (M ; Z) .(4.9)

4.1.1. Remarks on compatibility with other equivalences for Morse homology. In
view of the axiomatic approach to Morse homology adopted in [Sch93], it is straight-
forward, based on Lemma 4.8, to verify that the homomorphism Φ is natural. This
means it respects functoriality with respect to closed embeddings, w.r.t. changes of
Morse functions, and it is compatible with the relative version of Morse homology.
Thus, we can refer to the uniqueness result from [Sch93], mentioned in 2.2, in or-
der to conclude that Φ is in fact the unique, natural isomorphism between Morse
homology and singular homology.

Let us also remark that in case of a self-indexing Morse function f , i.e.

µ(x) = f(x), ∀x ∈ Crit f,

we have the obvious isomorphism

Γk : Ck(f)
∼=
−→ Hsing

k (Mk, Mk−1; Z),(4.10)

for Ma = { p ∈ M | f(p) 6 a }, a ∈ R. A classical proof for the equivalence of Morse
homology and singular homology6 is to show

Γk−1 ◦ ∂(f, g) = ∂∗ ◦ Γk(4.11)

for the boundary operator in the long exact sequence associated to the decomposi-
tion (Mk, Mk−1)k=0,... ,n,

Hk(Mk, Mk−1)
∂∗−→ Hk−1(M

k−1, Mk−2) .(4.12)

Obviously, we have for j : Hk(Mk) → Hk(Mk, Mk−1),

j ◦ Φfg(a) = Γ(a), ∀a ∈ Zk(f, g)(4.13)

so that the induced isomorphism Γ: H∗(f, g)
∼=
−→ Hsing

∗ (M ; Z) and Φf,g are identi-
cal.

6used in [Mil65]



16 MATTHIAS SCHWARZ

4.2. The Inverse Homomorphism. Although it is already clear that the homo-
morphism

Φ: HMorse
∗ (M ; Z) → Hsing

∗ (M ; Z)

is a natural isomorphism, let us nevertheless construct its inverse Ψ = Φ−1 explicitly

along the same lines as used for Φ.
The main idea is to define an intersection number for pseudo-cycles and stable

manifolds W s(x) for a generic Morse-Smale pair (f, g). Recall from [Sch93] the
construction of a Banach manifold G of smooth Riemannian metrics, L2-dense in
the space of all smooth Riemannian metrics. We consider a metric g to be generic
with respect to a certain property, if we can find a residual set R ⊆ G of metrics
with that property. The first step is

Theorem 4.9. Let χ : V k → M be a smooth map of a k-dimensional manifold

into M and f a Morse function on M such that χ(V ) ∩ Crit f = ∅ if k < n or

rankDχ(p) = n for all p ∈ χ−1(Crit f) if k = n. Then there exists a residual set

R ⊆ G such that

Mχ;x(f, g) = { (p, γ) ∈ V × W s(x) | γ̇ + ∇gf(γ) = 0, γ(0) = χ(p) }

is a smooth manifold of dimension

dimMχ;x(f, g) = k − µ(x)

for all x ∈ Crit f and g ∈ R. In particular, it is empty if k < µ(x).

Also, as will be clear from the proof, if V k, M and W s(x) are oriented, the inter-
section manifold Mχ;x(f, g) inherits a well-defined orientation which is a number
±1 ∈ Z2 if k = µ(x).

Proof. The main ingredient of this transversality theorem is the following

Lemma 4.10. The universal stable manifold

W s
univ{ (γ, g) ∈ C∞([0,∞), M) × G |γ̇ + ∇gf(γ) = 0, γ(+∞) = x }

for x ∈ Crit f , f a Morse function, admits a submersion

E : W s
univ(x) → M, E(γ, g) = γ(0),

away from the critical point γ ≡ x. It is also a submersion everywhere if µ(x) = 0.

Proof. Let us recall some analytic constructions from [Sch93]. The space

H1,2
x = H1,2

x ([0,∞), M)

is the H1,2-Sobolev completion of the space of smooth curves γ : [0,∞) → M with
sufficiently fast convergence toward x ∈ M as t → ∞. It is in fact a Hilbert
manifold. The tangent space to the Banach manifold of smooth Riemannian metrics
on M is

TgG = { h ∈ C∞
ǫ (End(TM)) |h symmetric w.r.t. go }

for some fixed Riemannian metric go. The function space C∞
ǫ is an L2-dense sub-

space of C∞ with a Banach space norm. Let us now consider the smooth map

F : H1,2
x × G → L2(H1,2

x
∗TM),

F (γ, g) = γ̇ + (∇gf) ◦ γ,
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where the right hand side space is a Banach space bundle over the manifold H1,2
x

with fiber L2(γ∗TM) of L2-vector fields along the curve γ. Choosing a Riemannian
connection ∇ on TM we obtain the linearization of F as

DF (γ, g)(ξ, h) = DF1(γ, g)(ξ) + DF2(γ, g)(h),

DF1(γ, g)(ξ) = ∇tξ + (∇ξ∇gf) ◦ γ,

DF2(γ, g)(h) = h(γ) · ∇gf(γ) .

Observe that h(γ) is an endomorphism of the pull-back bundle γ∗TM . Hence, any
variation of h(γ(t)) as a function of time t can be achieved through a variation of
h over M if γ is injective. Altogether we obtain the tangent space of the universal
stable manifold as

T(γ,g)W
s
univ(x) = { (ξ, h) |DF (γ, g)(ξ, h) = 0 },(4.14)

because 0 is a regular value for F , as it will be clear below. Given γ(0) = p ∈ M
and (γ, g) ∈ W s

univ(x) we have to show that for each v ∈ TpM there exist (ξ, h) ∈
T(γ,g)W

s
univ(x) such that ξ(0) = v, if either

(a) γ(0) 6∈ Crit f , i.e. γ(0) 6= x, or
(b) γ(0) = x and µ(x) = 0.

In the latter case (b) we have γ ≡ const = x with

DF1(x, g)(ξ) = ξ̇ + Hess f(x) · ξ, DF2(x, g)(h) = 0,

where the Hessian at x ∈ Crit0 f is positive definite. This implies

kerDF (x, g) = TxM × TgG,

and hence the submersion property of E.
In case (a) let us simplify the operator DF (γ, g) by using coordinates with respect

to an orthonormal parallel frame of γ∗TM . We obtain the operator,

D : H1,2([0,∞), Rn) × TgG → L2([0,∞), Rn)

D(ξ, h) = ξ̇ + A(t)ξ + h · X,
(4.15)

where A : [0,∞) → S(n, R) is a smooth path in the space of symmetric n × n-
matrices with A(∞) = Hess f(x) and X : [0,∞) → R

n with X(t) 6= 0 for all
t ∈ [0,∞). We shall now prove that for all η ∈ L2([0,∞), Rn) and v ∈ R

n there
exist ξ ∈ H1,2([0,∞), Rn) and h ∈ C∞

o ([0,∞), S(n)) such that D(ξ, h) = η and
ξ(0) = v. This concludes the proof of (a) in view of the fact that each such h arises
from an h ∈ TgG since γ is injective if γ(0) 6= x.

Suppose that there exist η and v such that

〈D(ξ, h), η〉L2 + 〈ξ(0), v〉Rn = 0 for all ξ, h .(4.16)

This implies that η ∈ H1,2([0,∞), Rn) and η̇ − At(t)η = 0 and therefore η ≡ 0
if η(0) = 0. Moreover, (4.16) implies that 〈hX, η〉 = 0 for all h and we have
X(t) 6= 0. If η(0) 6= 0 we can find7 h(t) with support in [0, ǫ) such that 〈hX, η〉 6= 0
contradicting (4.16). Hence we obtain η ≡ 0 and by (4.16) 〈ξ(0), v〉Rn = 0 for all ξ
which implies v = 0. Since the cokernel of D in L2 is finite-dimensional it follows
that D is surjective.

7Compare (2.38) in the proof of Proposition 2.30 in [Sch93]
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The proof of Theorem 4.9 now follows from the parameter version of the Sard-
Smale theorem. There exists a residual subset R ⊆ G such that for each g ∈ R the
map

(χ, E) : V k × W s
g (x) → M × M

intersects the diagonal △ = { (p, p) | p ∈ M} transversely. For such a generic g,

Mχ;x(f, g) = (χ, E)−1(△)

is a smooth manifold of dimension k + (n − µ) − n.
Note that for k = µ(x) intersections (p, γ) ∈ Mχ;x(f, g) for a regular g can only

occur if rankDχ(p) = k. Therefore, it is obvious how the solution space Mχ;x

inherits its orientation from an orientation of V k, M and W s(x).

The main consequence of the intersection theorem 4.9 is the compactness result

Corollary 4.11. For each k-dimensional pseudo-cycle χ : V k → M with χ(V ) ∩
Crit f = ∅ if k < n, and rankDχ(p) = n for all p ∈ χ−1(Crit f) and χ(V ∞) ∩
Crit f = ∅ if k = n, there is a residual set of metrics R such that the intersection

set Mχ;x(f, g) is finite for all x ∈ Crit f with µ(x) = k and g ∈ R.

Proof. Consider a sequence (pn, γn) ⊆ Mχ;x(f, g). After choosing a suitable sub-
sequence we have

χ(pn) → xo ∈ χ(V ), γn

C∞

loc−→ γo ∈ W s(x′), µ(x′) > µ(x), γo(0) = xo .(4.17)

In the case that xo ∈ χ(V ∞), we use that χ(V ∞) can be covered by a map

χ̃ : Ṽ k−2 → M , so that (po, γo) ∈ Mχ̃;x′(f, g), χ̃(po) = xo. Since the intersection of
residual sets is residual it follows from Theorem 4.9 that for a generic g Mχ̃;x′ has
to be empty by dimensional reasons. Thus xo ∈ χ(V ∞) can be excluded.

Sharpening the convergence result (4.17) we can deduce weak convergence to-
wards a broken trajectory

γn ⇀ (γo, u1, . . . , ur), γo ∈ W s(x′), u1 ∈ Mx′,x1
, . . . , ur ∈ Mxr−1,x .(4.18)

For such multiply broken trajectories we must have µ(xi−1) > µ(xi). Hence, if
k = µ(x) we cannot have x′ 6= x and Mχ;x(f, g) must be compact and hence
finite.

Applying the concept of coherent orientations we can now associate to each
intersection (p, γ) ∈ Mχ;x(f, g) a sign τ(p, γ). Given a k-dimensional pseudo-cycle

χ : V k → M representing a singular cycle α = αχ ∈ Hsing
k (M) with k < n we

can find a Morse function f such that Crit f ∩ χ(V ) = ∅. If k = n, after possibly
homotoping χ to a suitable cobordant pseudo-cycle, we can find a Morse function
f such that we have only p ∈ χ−1(Crit f) with rankDχ(p) = n. We then define in
view of Theorem 4.9 for a generic g

Ψ(χ) =
∑

x∈Critk f

#algMχ;x(f, g)x ∈ Ck(f, g) .(4.19)

Corollary 4.12. The chain Ψ(χ) ∈ Ck(f, g) is a Morse-cycle, and given two cobor-

dant pseudo-cycles χ, χ′, the associated Morse-cycles are cohomologous, Ψ(χ) −
Ψ(χ′) = ∂(f, g)b for some b ∈ Ck+1(f, g).
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Proof. Computing

∂(f, g)
∑

x∈Critk f

#algMχ;x(f, g)x =
∑

µ(y)=k−1

n(χ; y) y,

n(χ; y) =
∑

µ(x)=k

#algMχ;x(f, g)#algMx;y(f, g),

we have to show that

n(χ; y) = 0 .(4.20)

This follows readily from the 1-dimensional compactness result for Mχ;y analo-
gous to (4.17) and (4.18) and the corresponding gluing operation. Namely, since
dimχ − µ(y) = 1, non-compactness of Mχ;y(f, g) for generic g can only occur
in terms of simply broken trajectories in the limit. But exactly as for the proof
of the fundamental fact ∂(f, g)2 = 0, the corresponding gluing result completely
analogous to Lemma 4.1 shows that the oriented number of boundary components
of Mχ;y(f, g) equals n(χ; y) and has to vanish since each component of Mχ;y is
diffeomorphic to an interval. This proves (4.20).

Given a pseudo-cycle cobordism F : W k+1 → M in the sense of Theorem 3.1
(b), i.e. ∂F = χ − χ′, we can define the 1-dimensional manifold MF ;x(f, g) for
x ∈ Critk f , and generic g. The same compactness-gluing argument as before
shows

∂(f, g)
∑

x∈Critk f

#algMF ;x(f, g)x = Ψ(χ) − Ψ(χ′) .(4.21)

The thus well-defined homomorphism

Ψf,g : Hsing
∗ (M ; Z) → H∗(f, g)

is compatible with the canonical isomorphism

Φ10 : H∗(f
0, g0) → H∗(f

1, g1) .

We have

Corollary 4.13. Considering the isomorphism Φ10 for generic Morse-Smale pairs,

it holds

Φ10 ◦ Ψf0,g0 = Ψf1,g1 ,

and we have for the well-defined homomorphism

Ψ: Hsing
∗ (M ; Z) → HMorse

∗ (M ; Z)

the identity Ψ ◦ Φ = idHMorse .

Proof. The proof of the compatibility Φ10 ◦ Ψf0,g0 = Ψf1,g1 can be carried out
exactly analogous to that for Lemma 4.8 using the argument from the proofs of
Corollaries 4.11 and 4.12.

Consider now the k-dimensional pseudo-cycle E : Z(a) → M associated to a
Morse-cycle a ∈ Zk(f0, g0). Let y ∈ Critk f1. Then in view of Theorem 4.9
for a Morse-Smale pair (f1, g1) with generic g1 we have intersections (p, γ) ∈
ME;y(f

1, g1) only for p ∈ Z(a) on the k-dimensional strata which are exactly
the unstable manifolds Wu(x, f0, g0) in a =

∑
x∈Critk f0 ax x. We therefore have

ME;y(f1, g1) = { (γ−, γ+) ∈ Wu(x, f0, g0) × W s(y; f1, g1) | γ−(0) = γ+(0) } .
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Using a homotopy operator as before we can show easily that this is homologically
equivalent to the definition of the operator Φ10 : C∗(f

0, g0) → C∗(f
1, g1), i.e.

Ψf1,g1 ◦ Φf0,g0 = Φ10 : H∗(f
0, g0)

∼=−→ H∗(f
1, g1) .(4.22)

This proves Ψ ◦ Φ = idHMorse .

Using the fact that HMorse
∗ (M) ∼= Hsing

∗ (M), it follows immediately that the left-
inverse Ψ is the inverse of Φ. Thus we have explicit constructions of both isomor-
phisms in terms of Morse-pseudo-cycle equivalences.
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[Sch98] M. Schwarz, A quantum cup-length estimate for symplectic fixed points, Invent. math.
133 (1998), 353–397.

[Sei97] P. Seidel, π1 of symplectic automorphism groups and invertibles in quantum homology

rings, Geom. funct. anal. 7 (1997), 1046–1095.
[Wit82] E. Witten, Supersymmmetry and Morse theory, J. Diff. Geom. 17 (1982), 661–692.

Department of Mathematics, University of Chicago, Chicago, IL 60637

E-mail address: schwarz@math.uchicago.edu


	Introduction
	Morse homology
	Definition
	Isomorphism via axiomatic approach

	Pseudo-cycle homology
	The Explicit Isomorphism
	Pseudo-cycles from Morse cycles
	Remarks on compatibility with other equivalences for Morse homology

	The Inverse Homomorphism


